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Background:  
Yield monitors are now increasingly used to determine yield of corn silage and grain on farms 
across Northern New York. With yield data, farmers can build their own yield potential database 
for nutrient management planning, engage in the adaptive nitrogen (N) management process, and 
participate in meaningful on-farm research. However, not all farms can afford yield-monitoring 
equipment, data collection requires calibration (and farm scales), and post-harvest data cleaning.  
 
This project was initiated to evaluate if/how data sources such as aerial images obtained with 
unmanned aerial systems (drones) and satellites can be used to estimate corn grain and silage 
yields. If accurate predictions are possible, an approach can be designed to give all corn growers 
access to reliable yield data and we can avoid issues with calibration, sensor breakdown during 
harvest, and post-harvest data cleaning. Such an image-based approach can therefore be time-
saving and potentially result in more accurate estimates. Furthermore, grain and silage yields can 
be estimated for previous years, based on the availability of imagery data, which allows farmers 
to more quickly develop yield stability zones for zone-based management decisions.  
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Methods:  
Part A: Drone Imagery: 
We evaluated the timing of drone flight (growth stage) and vegetation index type on accuracy of 
image-based yield predictions using data collected in 2019 at Aurora, NY. We used a Quantix 
unit (unmanned aerial vehicle mounted with a multispectral camera), a unit being used by 
Champlain Valley Agronomics in Peru, NY.  The treatments included N sidedress at V4, V6, V8, 
and V10 along with no-N and N-rich strips. We collected drone images at weekly intervals 
starting from emergence (VE) to maturity (R5) to answer two questions:  
 (1) what is the best timing for image collection (growth stage), and 
  (2) what vegetation index gives us the most accurate estimations. 
 
Part B: Satellite Imagery: 
Datasets and indices calculations: 
• Yield monitor data: We obtained yield monitor data from six farms in NNY, of which four 

had more than four years of yield data and a minimum of two fields with N-rich strips in 
2019. The dataset included grain and silage yield data. Raw data were cleaned of errors using 
the standardized data cleaning protocol developed for NY corn fields.  

 
• Remote sensing data: We downloaded satellite imagery obtained from PlanetLab’s 

CubeSAT platform. This platform offers free imagery captured daily at 3 m/pixel resolution 
with four spectral bands (red, green, blue, and near-infrared [NIR]). In this study, we used the 
crop canopy reflectance signals before the senescence stage (before leaves started to turn 
yellow), and soil reflectance signals before planting for the same fields. For example, for one 
of the farms, the downloaded crop imagery was captured on September 25, 2019, and the soil 
imagery was captured on May 22, 2019. From both these images, we used the individual 
spectral band values from four bands as a variable to estimate yield (2 images × 4 bands = 8 
features).  
 

• Vegetation indices (5 features): From the satellite image of crop canopy, we calculated five 
vegetation indices that are commonly being used to estimate yield, crop health, and biomass 
content. The five indices are normalized difference vegetation index (NDVI), two enhanced 
vegetation index (EVI and EVI2), green normalized difference vegetation index (GNDVI), 
and excess green (EXG). We also used the individual spectral band values from four bands. 
  

• Soil indices (5 features): Previous literature on developing yield estimation models did not 
use soil indices as a variable, but we believed the soil indices will also have an influence on 
yield estimations. Therefore, in this study, we calculated five different soil indices from the 
soil reflectance imagery obtained before planting. The five indices were brightness index, 
coloration index, hue index, saturation index, and redness index. Also, we used individual   
spectral band values from four bands.  
 

Digital elevation model (1 feature): Along with features, we also used the digital elevation model 
(DEM) data obtained from the New York State Geographic Information Systems (GIS) 
Clearinghouse (https://gis.ny.gov/) at 1 m/pixel resolution.  
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Model Development: 
Yield variability within field is large and the relationship between the image features and yield is 
not linear. Machine learning approaches are proven to be accurate in developing relationships 
with this kind of non-linear data. Therefore, in our study, we used machine-learning approaches 
to build yield prediction models using the image features.  
 
One of the common and first-hand approaches in machine learning is the “random forest” model, 
predominantly used for classification applications. Before building a model, it is necessary to 
identify and select the best features that will be important to develop that model and eliminate 
the rest of the features. We used a feature selection approach called the “Boruta” method, which 
is the most recommended method for random forest models. To make our data suitable for this 
machine-learning model, we converted the yield data from numerical variable (measurable 
quantities) to categorical variable (as classes). We divided the entire range of yield data into the 
following five yield classes: high, medium-high, medium, medium-low, and low. Each class 
represents a range of yield values. The yield data were divided into two sets: one set with 80% of 
the data used for training the model and second set with the remaining 20% used to test the 
model. Only the selected five features were used to develop models.  
 
 
Results:  
Part A: Drone Imagery: 
Of all vegetation indices tested, NDVI consistently was best indicator for estimating yield.  
 
We also discovered that flights at R4 gave most accurate predictions, better than flights after leaf 
senescence or flights at earlier vegetative stages.  
 
Timing of sidedressing impacted the accuracy of the yield estimations, with less reliable 
predictions when sidedressing occurred after V6.  
 
We developed an exponential model to estimate the yield (as numeric value) using the 
reflectance signals from the no-N, N-rich, and sidedress at V4 treatments. The resulting 
estimated yield map was similar to the yield monitor data points (Figure 1). Furthermore, it 
showed clear differences in yield at the three no-N strip locations. 
 
The findings of these analyses showed that our satellite work should focus on images collected 
later in the season, at or close to R4, with NDVI as vegetation index.  
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Figure 1. Cleaned yield monitor data and the estimated yield map from the developed 
exponential model.  
 
Part B: Satellite Imagery: 
The top five features identified by the Boruta method were digital elevation (DEM), crop 
greenness, soil NIR, NDVI, and soil redness. The performance of the random model that 
included these five features was validated with the test data (20%), which produced a 
classification accuracy of 58% for grain and 68% for silage.  
 
Figure 1 shows the cleaned yield monitor data and the estimated yield map generated from the 
trained model with five yield classes. To generate the estimated map, the selected five features 
were extracted from the satellite images and the DEM and passed into the trained model to 
classify into different yield classes.  
 
Even with somewhat low accuracy (58%), the estimated yield map looked similar to the actual 
yield map (Figure 2). Specifically, the low-yielding headland regions and the medium- and 
medium-high yielding non-headland regions were appropriately identified. A few patches of 
low-yielding portions of the field in the non-headland region were also identified. Reducing the 
number of yield classes to three and developing the model improved the accuracy to 77% for 
grain and 84% for silage, but the yield map had less information when only three yield classes 
were used. 
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Figure 2. Cleaned yield monitor data (left) visualized after processing and cleaning and the 
estimated yield map (right) obtained from the satellite imagery and digital elevation model 
from a grain field (top) and a silage field (bottom).  
 
Conclusions/Outcomes/Impacts: 
The estimated yield map using the developed models showed promising results, demonstrating 
the potential to use free data layers (satellite images and DEM) for mapping the yield without the 
yield monitor data.  
 
Work is currently ongoing to evaluate other fields for which imagery and yield monitor data 
were obtained, and to evaluate the importance of field calibration (knowing the actual yield of a 
known area in the field to predict yield in other parts of the field). We hope to continue this work 
with expansion of fields, in the hope to develop yield stability zone maps for farmers.  
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Our current focus is on improvement of the models with the future goal to develop a standalone 
tool, which takes the data layers and automatically produces a yield and/or zone map. Such a tool 
will give all farmers access to yield estimates for zone-based field management, which will 
benefit allocation of resources to areas that need the extra inputs (such as nutrients) or benefit 
from inputs (seed populations, etc.) and away from areas where yields are limited due to other 
reasons.  
 
Outreach: 
This project was described at winter meetings including the Northeast Region Certified Crop 
Advisor annual meetings where we gave a presentation on “Creating and managing zones within 
fields; a pathway forward”, attended by approximately 125 people, mostly certified crop 
advisors. The farms that shared data received their farm-specific yield reports.  
 
We held meetings that were attended by consulting firms to get feedback on zone management 
(practices, barriers, need for research) that indicated the importance of evaluation tools and yield 
assessment tools that are more easily accessible to farmers and farm advisors.  
 
Additional talks and extension articles will be developed once analyses of the 2019 initial dataset 
is completed (anticipate by March 31). 
 
 

Next Steps: 
With the help of two computer science/statistics students we aim to expand on our current 
analyses to include more acres and years of data and to evaluate accuracy when image collection 
is done earlier in the growing season. We also plan to write an agronomy fact sheet on the use of 
satellite imagery for precision agriculture, with a focus on different satellite platforms and 
information such as resolution of data, frequency of flights, where to download the imagery for 
various satellites, and how to use the data. We are actively pursuing collaborations and funding 
to expand current findings to statewide evaluations.  
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Website updates:  
• Drones and Satellite Imagery for Yield Predictions and N Management Decisions: 

http://nmsp.cals.cornell.edu/NYOnFarmResearchPartnership/DronesforMgt.html.   
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