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Background 
Yield monitors are increasingly used to determine yield of corn silage and grain across northern 
New York and throughout the state. Yield monitor systems allow farms to map their yields and, 
once at least three years of data are gathered, to also build their own yield potential database and 
yield-stability based management zones, and conduct on-farm research to learn how to manage 
zones, using an easy to conduct single strip experiment.  
 
While yield monitor systems have advanced our ability to map yield, it is well known that 
collection of accurate data requires frequent calibration in the field as well as post-harvest yield 
data cleaning. If all goes well, the information gained is extremely valuable but if a sensor breaks 
during the harvest season, all yield data may be lost, with no opportunity to recover information. 
In addition, not all farms can afford yield monitoring equipment. Thus, we need to look for other, 
less risky, and more affordable, ways to obtain yield estimates and generate zone maps. 
 
Drone and satellite imagery could be used to generate satellite-derived stability maps, making 
this concept usable for farmers even without yield monitor data. Prior work has focused on 
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drone-collected yield data and, while very promising (Sunoj et al., 2021), this remains a labor-
intensive approach, and it requires calibration areas within fields (Nrich strips).  
 
This NNYADP-funded project was initiated to evaluate how effectively we can use the satellite 
imagery to obtain yield maps and yield stability-based zone maps.  

 
Methods  
Part A: Generating yield maps from satellite imagery 
 
Yield monitor data 
We collected three years (2020-2022) of yield data from six fields within three farms (two dairy 
corn silage, one cash corn grain) and cleaned them using the protocol developed at NMSP. Each 
farm consisted of two fields that were close to each other, with one field larger than the other. 
Only fields that had reliable yield monitor data for three years of corn grain or three years of corn 
silage were selected. The details of each field's average yield per year and area are shown in 
Table 1.  
 
Table 1. The average yield and area of corn grain and silage for six fields that were part 
of the NNYADP Satellite-Derived Yield Maps and Yield Stability Based Management 
Zones project 2020-2022. 

Farm Field 
Area 

(acres) Yield unit 
Yield in 
year 1 

Yield in 
year 2 

Yield in 
year 3 

Silage A Field 1 68 tons per acre 21.0 24.3 21.8 
 Field 2 47 tons per acre 27.1 25.9 24.7 

Silage B Field 1 46 tons per acre 24.5 18.9 21.4 
 Field 2 30 tons per acre 19.9 14.9 18.5 

Grain Field 1 80 bushels per acre 139.9 159.0 132.0 
 Field 2 31 bushels per acre 144.7 157.4 133.5 

 
Satellite imagery of soil and canopy 
The satellite images from Planet’s Dove constellation (one of two constellations operated by 
Planet; https://www.planet.com/our-constellations/) were downloaded using the Planet Explorer 
tool in QGIS, a free open-source Geographic Information System (https://www.qgis.org/en/site/). 
The resolution of the imagery is 3m per pixel with four spectral bands (red, green, blue, and 
near-infrared [NIR]). The soil imagery was obtained one or two days before planting, and the 
canopy imagery was obtained approximately 75 days after planting each year.  
 
Yield classes 
The yield data from each field were combined across years and divided into five yield classes 
(Figure 1). The upper and lower tails of the combined distribution are removed by applying an 
outlier filter. With the remaining distribution, the high and low-yielding areas are identified as 
the top and bottom 10 percentile yield data. The remaining yield range was equally split into 
three classes representing med-low, medium, and med-high yielding areas. 
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Feature extraction 
• Soil indices (5 features): 

The soil imagery from each 
year was used to calculate 
five different soil indices: 
brightness index, saturation 
index, hue index, coloration 
index, and redness index. 
These indices provide 
optical signals of the soil.  
 

• Vegetation indices (7 
features): The canopy 
imagery from each year 
was used to calculate seven 
vegetation indices: 
normalized difference 
vegetation index (NDVI), 
green normalized 
difference vegetation index 
(GNDVI), enhanced 
vegetation index-2 (EVI2), 
simple ratio (SR), green chlorophyll vegetation index (GCVI), excess green (EXG), and 
triangular greenness index (TGI). These indices are canopy signals that represent crop health.  
 

• Digital elevation model (1 feature): Along with the feature indices, we also used the digital 
elevation model (DEM) data obtained from the New York State Geographic Information 
Systems (GIS) Clearinghouse (https://gis.ny.gov/) at 1m per pixel resolution.  
 

• Landform classes (6 features): The DEM imagery was used to categorize each pixel in the 
image into either of the six landform classes: valley, lower slope, flat area, middle slope, 
upper slope, and ridge. This is a nominal variable, so they cannot be arranged or ranked in any 
specific order. To use them in the machine learning models, we performed “one-hot 
encoding,” which transforms each class into a feature and assigns either a 1 or 0 value to that 
feature. 

Machine learning modeling for yield maps 
• Feature selection: We employed three feature selection methods to select the important 

features among the 19 features influencing the yield classes. The feature selection methods 
were Boruta, sequential lasso selection (SLS), and recursive feature elimination (RFE). The 
top seven features were selected based on the unified ranking from all the methods.    

• Model development: We trained three machine-learning models: random forest classifier, 
logistic regression, and support vector machine classifier. For each model, hyperparameters 
(number of estimators, c-value, solver, etc.) were tuned to identify the best parameter values 
and model.  
 

Figure 1: Categorizing yield data across three years 
into different yield classes (A through E where A 
represents the top 10%, E is the bottom 10 percent, 
and B, C, and D are equally split into three classes 
between class A and E. 
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• Validation approaches: With the identified hyperparameters and models, the yield class 
predictions were made based on the following two approaches: (i) Year fit – training with 
two years of data and testing the left-out year; and (ii) Farm fit – training with one field and 
predicting the adjacent field in the same farm.   

 
Part B: Generating yield stability maps from satellite imagery 
The datasets we used for training yield models consisted of three years of yield data and satellite 
imagery for each field. The same datasets were used to develop yield stability maps from satellite 
imagery. The NDVI was calculated from the canopy imagery captured approximately 75 days 
after planting from each year (Figure 2A). Using the three years of data, each pixel's temporal 
average and temporal standard deviation were computed (Figure 2B). These NDVI values data 
were plotted to obtain the “weighted average” and “weighted standard deviation (SD)” of NDVI 
values to delineate the pixels into either of the four zones (Figure 2C), similar to yield-based 
stability zones.  
 
Results: 
Part A: Satellite-derived yield maps 
Modeling results 
• Selected features: Among the 19 features, the top seven features were GCVI, GNDVI, 

elevation, SR, brightness index, EVI2, and NDVI. Thus, top ranked features include soil 
(brightness index) and topography (elevation) features, as well as five vegetation indices. 
These top features were the same for grain and silage fields, but they ranked somewhat 
differently across farms.  

  
• Best performing machine learning model: The random forest produced the best accuracy 

with a specific set of hyperparameters, followed by the logistic regression model and support 
vector machine classifier. Moreover, the random forest model was faster than the other two 
models in training. 

 
Validation results 
• Year fit – Training the models with two years of data and testing the left-out year resulted in 

accuracies ranging from 66% to 73% for grain fields and 62% to 78% for silage fields. These 
accuracies indicate that, as far as the training data cover the variability of the testing field, 
high accuracy can be attained. The potential application of this approach will be to use the 
available years of yield data to train the model and predict the missing years’ or past years’ 
data.   
 

• Farm fit – The accuracy of the models trained with one field each year and testing the 
adjacent field resulted in comparable accuracy. The accuracy ranged from 73% to 76% for the 
grain farm and 71% to 82% for silage farms. The higher testing accuracies compared to the 
year fit approach are likely because the training and testing data were obtained within the                                                                                                                                                                                                                                            
same year, which would have the same weather and reflectance conditions. In most cases, 
training with a bigger field and testing the smaller adjacent field resulted in higher accuracy 
than the other way. These results show the potential of expanding the yield class prediction to 
the entire farm by training with only a few major fields with yield monitor data.		



 

5 | P a g e  
 

 
Figure 2: Process of obtaining stability maps from satellite imagery. (A) NDVI maps from 
satellite imagery obtained approximately 75 days after planting; (B) the temporal average 
and standard deviation maps calculated from three years of NDVI data; and (C) scatter 
plot showing the distribution of temporal average NDVI and temporal standard deviation 
to obtain the weighted average and SD and delineating satellite-derived stability zones.  
 
 
Part B: Satellite-derived yield stability maps	
The satellite-derived yield maps looked similar to the actual yield stability maps (see Figure 3 for 
an example). The accuracy of the classification of stability zones by our developed approach at 
approximately 75 days after planting was about 84% (Figure 3). Most of the areas representing 
Zone 1 (green) and 3 (yellow) were correctly classified. Misclassification was mainly from Zone 
2 (blue) and 4 (red).  
 

We also used earlier (approximately 65 days after planting) and later-stage (approximately 83 
days after planting) images as a preliminary trial. We saw slight improvements in the accuracy 
(to 85%) for later-stage images and a reduced accuracy of 78% for the earlier-stage image. 
Selecting the right imagery time remains a potential research question to be answered. The 
Planet’s satellite images have a daily revisitation rate, making it a great data source for deriving 
more inferences for satellite-derived yield stability maps.  
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Figure 3: Example of a comparison between satellite-derived stability map and the actual 
yield stability map. 

 
 

Conclusions/Outcomes/Impacts 
The “farm fit” approach gave an accuracy ranging from 71% to 82%, which shows promise in 
predicting the yield classes of all fields on a farm by training with only a few larger fields. The 
“Year fit” approach gave an accuracy of 62% to 78%, which suggests that determining yield for 
missing years or past years where yield was not collected is feasible as well, but estimations will 
be slightly less accurate. 
 
The classification accuracy of yield stability maps was about 84% from the satellite imagery 
captured on approximately 75 days after planting which shows potential for developing an 
alternative technique to derive stability maps for the farms that do not have yield monitor data.  
 
Work is ongoing to answer further questions about year fit, and farm fit including the number of 
years of data and the number of fields in a farm should be used for training of machine-learning 
models. We are also exploring if machine-learning models can be employed to improve the 
accuracy of satellite-derived stability maps. In addition, we initiated work to determine accuracy 
of satellite imagery-derived yield (not classifications as we did here, but actual yield levels per 6 
x 6 ft grid cell. 
 
Outreach 
Project updates were shared with farmers and farm advisors at various meetings including the 
2022 Northeast Region Certified Crop Advisor and Field Crop Dealer Meeting, and Northern 
New York Crop Congress. Additional presentations are scheduled for the winter of 2023. The 
farms that shared data received farm-specific yield reports.  
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Next Steps 
With the help of interns, we aim to expand on our current analyses to improve the yield class 
prediction models, as well as answer some key questions of how many years of data and how 
many fields in a farm should be used to train the model. We also aim to develop a pipeline for 
data analysis. We are actively pursuing collaborations and funding to expand current findings to 
statewide evaluations.  
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